
The Collaborative Information Portal
and NASA’s Mars Exploration Rover Mission

Ronald Mak Joan Walton
University Affiliated Research Center (UARC)

University of California at Santa Cruz
NASA Ames Research Center

NASA Ames Research Center

The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames
Research Center and the Jet Propulsion Laboratory for NASA’s Mars Exploration Rover mission. Mission
managers, engineers, scientists, and researchers used this Internet application to view current staffing and
event schedules, download data and image files generated by the rovers, receive broadcast messages, and
get accurate times in various Mars and Earth time zones. This article describes the features, architecture,
and implementation of this software. and concludes with lessons we learned from its deployment and a look
towards future missions.

The Mars Exploration Rover (MJZR) mission was
phenomenally successful. The rovers, Spirit and
Opportunity, were robotic geologists that had impressive
arrays of cameras and scientific instruments. [l] See Figure
1. The rovers sent data and images back to earth, which
ground-based systems processed and stored in the mission
file servers. After analyzing the data and images, NASA
scientists concluded that Liquid water did exist on the
surface of Mars in the distant past. [2, 31

Propulsion Laboratory (PL), or in their homes, schools, or
offices. CIP had a three-tiered, service-oriented architecture
that comprised a client tier, a middleware tier, and a data
repository tier.

THE CIP CLIENT APPLICATION

Mission managers and engineers working inside mission
control at JPL controlled and communicated with the rovers.
Mission scientists and researchers working at JPL and
elsewhere planned the rovers’ operations and analyzed the
downloaded data and images. There were two teams, one
per rover, although some people moved kom one team to
the other. Most worked on Mars time. and each person
could have different roles at different times of the day.

The mission was not just about the rovers and data. On
earth, people managed the mission, sent commands to the
rovers, and analyzed the downloaded data and images. They
used the Collaborative Information Portal (CIP) to help
them perform their daily tasks, whether they were working
inside mission control or the science areas at the Jet

Figure 2 shows how the C P client application assisted the
rover teams with their daily tasks by consolidating several
useful tools into a single consistent and intuitive user
interface.

Figure 1: One of the Mars exploration rovers.
(Photo courtesy of NASA and JPL.)

Schedule viewer
Mission personnel referred to the staff and event schedules
that CIP displayed, especially if they worked on Mars time.
The Schedule Viewer Tool let them know when events
would occur, who was working when and where, and what
roles they needed to fill that day. The schedules helped them
adjust to Mars time-since a Martian day, or “sol”, is about
40 minutes longer than an Earth day, regularly scheduled
events drifted later from day to day relative to Earth time.

Event horizon
Users could place scheduled events into the Event Horizon
Tool, which then displayed a running countdown of the time

1

Broadcast
messages

Clocks

Tool tabs
for time

conversion
and file

navigation

Figure 2: A screen shot of the CIP client application.

left until the start of the event. Event table rows changed Broadcast announcements
colors to warn of impending start times.

Data navigation
NASA scientists and researchers used CIP’s Data Navigator
Tools to access the data and images stored in the mission
file servers. CIP transported this information securely over
the Internet. Users could navigate the data and images
organized hierarchically in directories, or as “data products”
organized by rover, sol, and instrument. See Figure 3.

CIP’s data repository tier generated metadata for the data
and images. Based on this metadata, the Data Navigator
Tools automatically classified and organized the data and
images into hierarchies. The tools used this classification to
determine which viewer to use when displaying a file. Users
could also do searches based on the metadata fields.

Clocks
“What time is it?’ was important to know for everyone
working on the MER mission. The mission ran on Mars
time, and there were two Martian time zones, one per rover.

The CIP client application displayed clocks that showed
Mars and Earth times in various time zones chosen by the
user. The CIP middleware server provided accurate times to
the client applications.

Event
horizon

-

Schedule
viewer

-

The Broadcast Announcements Tool allowed CIP users to
send messages to other users. Typical messages were
announcements about new data products. Users could
browse archived messages.

THE CIP ARCHITECTURE

Figure 4 shows CIP’s service-oriented architecture (SOA).
Partitioning the software into a client tier, a middleware tier,
and a data repository tier balanced and distributed the
computational resources, and enabled CIP to meet the goals
of scalability, reliability, extensibility, and security.

The client tier
Users ran the Java-based CIP client application on their
desktop or laptop computers. Therefore, there could be
many copies of this application running simultaneously.

We designed the client application to be a “thick client”
application that ran by itself, as opposed to a “thin client”
application that ran within a web browser. A thick client
application made better use of the user’s computer and
provided better interactivity and responsiveness. It contacted
the middleware over the Internet only whenever it needed to
request a service, such as when a user clicked a button. It
polled the middleware periodically for the current time and

2

navigai? by diemries and tiles

image viewer

Figure 3: Multiple viewing modes of the Data Navigation Tools.
(Images courtesy of NASA and PL.)

for any new broadcast messages. We implemented the client
application using the widely avaiiable Java piatform and
graphical user interface components from its Java
Foundation Classes ("Swing").

Figure 5 shows our component-based approach for the
client tier. Each client tool was a CIP Component object,
and a Service Manager object supported one or more CIP
Component objects. Each Service Manager object managed
the connections to a particular remote middleware service.
For example, the clock components used the Time Service
Manager object, which managed the connections to the
middleware's time service.

The middleware tier
The CIP middleware communicated over the Internet with
all the actively running copies of the CIP client application.
The middleware included a Java-based commercial off-the-
shelf application server and the Java components that we
developed. We designed it using SOA principles and two
industry standards, Java 2 Enterprise Edition (J2EE) and
web services. [4, 51 The J2EE-based components ('kans")
that we wrote were Enterprise JavaBeans (EJB) that
operated at run time under the control of the WebLogic
application server from BEA Systems, Inc. [6]

Time service to provide Mars and Earth times in various
time zones.
Mefadata query service to fetch metadata from the
database.
Schedule query service to fetch schedules from the
database.
File streaming service to download and upload files.
Message service for asynchronous notification and
broadcast messages.

Figure 6 shows how one or more Service Provider Ems,
which were stateless session beans, represented each
service. Each bean had public methods that client
applications invoked remotely over the Internet to request
services. The application server maintained an instance pool
of these stateless beans-it created or destroyed these
instances in response to the request load. This made CIP
scalable: as more requests arrived from the users, the
application server automatically replicated more Service
Providers to handle them.

Several of the middleware services created data beans,
which were stateful session EJBs. Because these beans
maintained state information, the application server cached
them in memory. For example, the metadata and schedule
query services created data beans that used Java Database
Connectivity (JDBC) calls to query the database
repositories. Each data bean kept a reference to the
returned query results, By taking advantage of the
application server's memory cache of data objects, the query
services greatly improved the performance of repeated

The middleware provided services to the various tools of the
client applications. Client applications requested services
from the middleware, which to each
request. The CIP middleware services included:

a

requests for the same data. If the data beans were already in
the cache, the service did not need to make the much more
time-consuming database queries.

User service to process user logins and
logouts and to maintain user sessions.

3

client (outside) LE--!

Figure 4: The CIP architecture.

A key middleware innovation was the use of web services.
As shown in Figures 5 and 6, client applications used web
services to communicate with the remote Service Provider
Ems. Each client Service Manager object had a web
services client stub that was the proxy for the remote
Service Provider bean.

Whenever a client application needed to request a service, it
made a local call to a method with the same name in the
client stub. The stub converted the call to a service request
in the form of a text document encoded in the =-based
SOAP protocol, as defined by the web services standard. [5]
The stub sent this document to the middleware server using
the encrypted I-I’ITPS protocol. The SOAP processor of the
target Service Provider bean decrypted the request and
invoked the appropriate public method of the bean. The
generated response returned similarly across the Internet to
the requesting client application as an encrypted SOAP
document. The client stub decrypted the response and
converted it to Java objects for the client application.

A client application always made local calls to the client
stub and got local results back from the stub. Web services
handled all the details of connecting to the remote Service
Provider Em, encryption and decryption, and sending
requests and responses across the Internet.

Organizing the middleware as a collection of loosely
coupled services made CP very extensible, since it was
very easy to “plug and play” new services and to replace or
remove obsolete ones. The application server enhanced,
reliability by monitoring the operation of the services and
automatically doing any necessary retries and error
recoveries.

The middleware logged every activity, such as user
requests. For each request, the log entry contained a
timestamp, the user’s name, the name of the called method,
details of the request, and key information about the results.
We did data mining in these logs afterwards to compute
various statistics, such as how frequently users accessed
certain types of schedules, or to deduce usage patterns, such
as what methods users employed to locate data products.
This enabled us to fine-tune the middleware’s operations.

We developed a separate clientside utility program to
monitor the middleware’s status constantly, and to report
graphically such statistics as memory usage and response
times. Knowing the health of the server at all times enabled
the system operators to correct problems before they
became serious.

We put the CIP middleware under intensive stress testing
before we deployed it into operation. This testing pointed
out performance bottlenecks and helped ensure that CIP
would be able to handle heavy loads. We developed a
standalone, interactive utility to perform the stress testing by
simulating any number of users performing various client
functions, such as accessing schedules or downloading files.

An important measurement of software reliability is how
long it stays up and running. An application can
unexpectedly crash, or system administrators can bring it
down for maintenance. A common maintenance operation is
to reconfigure an application to accommodate a change in
an operational parameter.

A key feature that allowed CIP to stay up and running for
long periods (over 77 days at a time before scheduled server

4

CIP CLIENT

Figure 5: The component-based architecture of the CIP client application

maintenance shutdowns) was dynamic reconfiguration. We
designed the individual middleware services to be hot
redeployable. In other words, we could restart a service
while the rest of the middleware (and CIP as a whole)
continued to run. To reconfigure a service, a system
administrator first edited the service’s configuration file (for
example, to change the one-way light time, which was the
time it took a signal to travel from Earth to Mars) and then
redeployed the service. When the service restarted, it read in
its new configuration. Redeploying a service typically took
only a few seconds, and often users did not notice any
interruptions.

CIP security was a combination of user management and
data encryption. The CIP middleware required each user to
log in with a user name and a password. Each user had pre-
assigned privileges that allowed or disallowed access to
certain data or images. Digital certificates from Verisign,
Inc. enabled the CIP middleware to encrypt all data traffic

between it and the users’ client applications. [8]

Asynchronous messaging
CIP had two types of asynchronous messages:

Notification messages that informed the CIP
middleware or CIP users that new data and image files
were available.
Broadcast messages that CIP users could send to all the
other users.

To implement asynchronous messages: the CIP middleware
used the Java Message Service (JMS). [9] JMS employs a
publish-subscribe model. The middleware had a number of
topics that represented different types of messages. A
message consumer, such as a CIP client application,
subscribed to one or more topics. Then whenever a message
producer (a CIP client application or another CIP
component) published (sent) a message to that topic, JMS

Figure 6: Web services and the Service Provider ETBs.

5

delivered the message to all the message consumers who
subscribed to that topic. CIP messaging was
asynchronous-message queuing and delivery occurred in
parallel with all other operations.

For example, users who were interested in panoramic
camera images subscribed to the pancam images topic.
Whenever the data repository tier detected a new panoramic
camera image, it published a message to the topic. The
interested users received the message via web services the
next time their client applications polled the middleware for
messages.

There was also a broadcast messages topic, to which all CIP
users subscribed and which enabled one user to send
messages to all the other users. In the middleware, a
message-driven EJB also subscribed to the topic. It received
and archived all the broadcast messages in the database. CIP
users could browse the archived messages.

The data repository tier
The data repository tier encompassed the Oracle databases
[lo] and the MER mission file system, which ran on
separate servers. See Figure 7.

The File Monitor constantly watched the logs generated by
the Unix utility program nfslogd, which wrote a log entry
every time a file was created, read, moved, or updated. 1111
The utility had a configuration file that contained regular
expressions for the file paths that were relevant to CIP. It
filtered out any files whose paths did not match any of the
expressions.

Unlike the File Monitor, the File Detector used the Unix
utility program find to “walk” the directory tree of the
mission file. system and find any relevant newly created or
updated files. 1121 It also used a configuration file that
contained regular expressions of file paths. The File
Detector walked the directories once during each run. It was

a backup for the File Monitor whenever nfslogd was not
running.

As soon as the File Monitor or the File Detector
encountered a newly created or updated file that was
relevant, it sent a message to the Data Loader. The Data
Loader generated metadata for that file. Using regular
expressions from a configuration file, the loader derived
metadata field values from the file path itself. The loader
also obtained some information from the Unix file system,
and for some types of files, it read the file header to get
more metadata field values. Example metadata fields
included the file name, the creation date and time, to which
rover the file belonged, the rover location, which rover
instrument generated the file data, during which sol, etc.
The loader inserted or updated the metadata in the database.

LESSONS LEARNED

We learned several important lessons during the design,
development, and deployment of CIP. [131

Following industry standards and using proven commercial
software for the infrastructure reasonably assured us that the
underlying “plumbing” would work. The real challenges of
enterprise development were not in the coding, but in the
integration of the various components.

Ever-changing requirements before deployment and ever-
changing operational parameters after deployment made it
crucial to develop services that are plug-and-play, mutually
independent, and dynamically reconfigurable.

Both user and stress testing were critical. P L ran a series of
Operational Readiness Tests where teams of mission
managers, engineers, and scientists tested software systems
such as CIP under realistic conditions. We found and fixed
many bugs during these tests and gained invaluable user
feedback. Our stress testing allowed us to discover the limits

Figure 7: The data repository tier

6

of our software before the users did.

Real-time server monitoring and logging helped the system
operators keep track of what‘s going on and head off any
potential problems. The middleware logs provided ways to
analyze usage patterns and fine-tune CIP’s middleware.

We were concerned initially that web services would cause
performance problems, since using XML documents for
service requests and responses involved much data
conversions, encryptions, and decryptions. CIP was able to
achieve a data throughput rate of 100 MB per hour between
a client application and the middleware, which was usually
sufficient.

Developing enterprise software is inherently difficult. Don’t
make it any harder. Use common sense. Keep things simple.

CIP AND FUTURE MISSIONS

The success of CIP on the MER mission encourages us to
make improvements to the software and to add new features
for user collaboration and inter-application data exchange.
Ames and JPL are currently designing a new version of CIP
for the upcoming Phoenix Mars 2007 Scout mission. [141

Efforts are underway to define common enterprise software
that multiple NASA centers can use for their future
missions. SOA and other industry standards will play
important roles in creating a multikcenter, multi-mission
infrastructure that will allow reusable software components
from different missions to communicate with each other and
to exchange data.

ACKNOWLEDGEMENTS

Funding for the developmexk of CIP came from NASA’s
Computing, Information, and Communications Technology
(CICT) Program and the Computing, Networking, and
Information Systems (CNIS) Project.

Besides the authors of this article, other CIP project
members included Roy Britten (QSS), Louise Chan (SAIC),
Sanjay Desai (SAIC), Matt D’Ortenzio (NASA), Glen Elliot
(JPL). Robert Filman (RIACS), Dennis Heher (SAIC), Kim
Hubbard (NASA), Sandra Johan (NASA), Leslie Keely
(NASA), Carson Little (Asani), Quit Nguyen (SAIC),
Tarang Pate1 (SAIC), John Schreiner (NASA), Jeff Shapiro
(QSS), Elias Sinderson (CSC), and Robert Wing (JPL).

This project would not have been possible without the
support, assistance. and collaboration of P L and the M E R
team.

7

REFERENCES

[1] Jet Propulsion Laboratory, NASA fact sheet, “Mars
Exploration Rover”, http://www.jpl.nasa.gov/news/
fact-sheets/mars03rovers.pdf.

[2] NASA press release, March 2,2004, “Opportunity Rover
Finds Strong Evidence Meridiani Planum Was Wet”,
http://marsrovers.jpl.nasa.gov/newsroom/ses/
20040302a.html.

[3] NASA press release, April 1,2004, “Spirit Finds Multi-
Layer Hints of Past Water at Mars’ Gusev Site”,
http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/
20040401a.html.

[4] http://java.sun.com/j2ed

[SI http://www.w3.orgl2002/ws/

[6] http://www.bea.com/fiamework.jsp?CNT=index.htm
&FP=/content/productserver

[71 http://java. sun .com/products/jdbc/

[8 J http ://www .verisign.com/

[9] http://java.sun.com/products/jms/

[101 http://www.oracle.com/index.html

[1 13 http://mirrors.ccs.neu.edu/cgi-bin/unixheIp/man-
cgi?nfslogd+ 1

[121 http://mirrors.ccs.neu.eddcgi-bin/unixhelp/man-
cgi?find+l

[13] Ronald Mak, “Enterprise Development for Mars and
other Alien Places”, keynote address presented at BEA
eWorld 2004 Conference, San Francisco. CA, May 26.
2004. Updated, expanded, and re-presented as a talk to
the SDForum Software Architecture and ,Modeling SIG,
Palo Alto. CA, August 11, 2004.

[141 http://mars.jpl.nasa.gov/missions/future/phoenix.html

BIOGRAPHIES

Ronald Mak worked on the CLP development team as the
architect and lead developer of its middleware. After the
rovers landed on Mars. he provided mission support both at
NASA Ames and at JPL. He is a Project Scientist in the
University Affiliated Research Center (UARC), which is a
partnership between the University of California at Santa
Cruz and the NASA Ames Research Center in Moffett
Field, CA. Prior to working at NASA, Ron had over 15
years of industry experience developing enterprise software

systems. He has taught graduate courses in computer
science, and he is the author of books on numerical
computing and on compiler writing. He has a B.S. in the
mathematical sciences and an M.S. in computer science
from Stanford University. Contact him at
ron @ apropos-logic.com or at rmak@mail.arc.nasa.gov.

Joan Walton is the Group Lead of the Information Design
Group in the Computational Sciences Division at the NASA
Ames Research Center. In her decade at Ames, she led
several multi-year projects to produce distributed
information management systems, including the DARWIN
system for the Ames wind tunnels and the Mars Exploration
Rovers Collaborative Information Portal. In her role as a
Project Manager of CIP, Joan led a team of twelve software
developers. She was responsible for guiding the technical
direction of the project, tracking the schedule, meeting
milestones, and interacting with MER mission management
to develop requirements and to meet JPL deployment
criteria. She holds a Bachelor of Arts Degree in Physics
from Swarthmore College and a Masters Degree in Medical
Information Sciences from Stanford University. Contact her
at jdwalton @mail.arc.nasa.gov.

8

